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m(t) ' Eccos(2c(t) % kpa(t)) ' Eccos(2Bfct % kpa(t)). (1)(1)

m(t) ' Ecos(2Bft) ' Ecos(2(t)). (2)(2)

d 2(t)
dt

' 2Bf Y f '
1

2B
d 2(t)

dt
. (3)(3)

ANGLE MODULATION

In amplitude modulation, we saw that we could impose the message signal upon the

carrier signal by varying the amplitude of the carrier.  The phase and frequency of the

carrier were left unchanged.  In angle modulation the amplitude is left unchanged but either

the phase or frequency of the carrier is varied in a manner proportional to the message

signal.

If we start with the normal carrier frequency at fc, Eccos(2Bfct), the phase of the

waveform is 2(t) = 2c(t) = 2Bfct.  If we now modify 2(t) linearly with the message signal,

i.e., 2(t) = 2c(t) + kpa(t) where kp is the phase sensitivity (in radians per volt or radians per

ampere) we will have a phase modulated waveform.  Our phase modulated waveform will

be

A frequency modulated waveform takes a little different form.  If we look first at a

sinusoidal waveform of unknown frequency, we could characterize it as 

To determine the frequency of this signal, we can differentiate the phase, 2(t), to get
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fi ' fc % kf a(t) '
1

2B
d 2(t)

dt
. (4)(4)

2(t) ' 2Bm
t

0
fidt ' 2Bm

t

0
[fc % kf a(t)]dt ' 2Bfct % 2Bkfm

t

0
a(t)dt. (5)(5)

s(t) ' Eccos 2Bfct % 2Bkfm
t

0
a(t)dt . (6)(6)

Knowing that the phase of the carrier wave is 2c(t) = 2Bfct, if we can modify the frequency

of 2c(t) such that the phase, 2(t), of a frequency modulated wave is no longer a function of

just fc, but a function of the instantaneous frequency, fi = fc + kfa(t).  The constant kf is the

frequency sensitivity in hertz per volt (or hertz per ampere).  By combining with the above

equation we can see that

To find 2(t) we simply integrate the quantity 2Bfi, so that

The frequency modulated waveform is therefore

Comparing Equations 1 and 6 we can see that they are of the same general form and

the frequency modulated waveform is simply a phase modulated waveform with the integral

of a(t) modifying the phase rather than a(t) modifying it as in Eq. 1.  Similarly, a phase

modulated waveform is just a frequency modulated waveform with the differentiated

integral of a(t) modifying the waveform rather than the integral. 

Given this relationship it suffices to analyze one or the other and the one not

analyzed can be inferred from the other.  Therefore we will only analyze Frequency

Modulation (FM).
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fi ' fc % kfa(t) (7)(7)

m(t) ' Ecc
cos (2Bfct % 2Bkfm

t

0
a(t)dt). (8)(8)

a(t) ' Emcos(2Bfmt). (9)(9)

fi ' fc % kfa(t) ' fc % kfAmcos(2Bfmt). (10)(10)

A. FM MODULATION

In the last section we saw that the instantaneous frequency of a frequency modulated

wave is

so that the FM wave could be described by

To begin analysis of this modulation form let's start with a sinusoidal modulating

signal of constant amplitude, i.e.,

the instantaneous frequency of the FM wave will then be

Just as we let m represent the percent of modulation in AM, we define a term in FM called

the frequency deviation, )f.  The frequency deviation is defined to be the frequency

sensitivity, kf, multiplied by the maximum amplitude of the modulating signal and is a

measure of how far the instantaneous frequency will deviate or change from the carrier

frequency.  In the case of the sinusoidal modulating signal, )f=kfEm, so that our

instantaneous frequency can be defined as
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fi ' fc % )fcos(2Bfmt). (11)(11)

m(t) ' Eccos (2Bfct % 2Bkfm
t

0
a(t)dt)

' Eccos (2Bfct % 2B)fm
t

0
cos(2Bfmt)dt)

' Eccos (2Bfct %
)f
fm

sin(2Bfmt)).

(12)(12)

m(t) ' Accos(2Bfct % $sin(2Bfmt)). (13)(13)

m(t) ' Eccos(2Bfct)cos($sin(2Bfmt)) & Ecsin(2Bfct)sin($sin(2Bfmt)), (14)(14)

m̃(t) ' mI(t) % jmQ(t). (15)(15)

Our FM waveform can therefore be defined as

We now define the modulation index for FM as )f/fm and we will call it $.  As we will soon

see, this will be the variable for a Bessel function, i.e., we will use $ in Bessel function

calculations.  Using this notation, the FM signal is defined as

(Note book uses m instead of $.)  

The following part is for completeness only.  You are not responsible for it.

We can find the in-phase and quadrature components mI(t) and mQ(t) of this signal using

the trig identity

so that mI(t)=Eccos($sin(2Bfmt)) and mQ(t)=Ecsin($sin(2Bfmt)).

Using the techniques of the complex envelope, we know that
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m̃(t) ' Ec[cos($sin(2Bfmt)) % jsin($sin(2Bfmt))]

' Ece
j$sin(2Bfmt)

.
(16)(16)

m̃(t) ' j
4

n'&4

cne
j2Bnfmt

(17)(17)

cn '
1
T0

m
T0/2

&T0/2
m̃(t) e &j2Bnt/T0 dt

' fm m
1/2fm

&1/2fm

m̃(t)e &j2Bnfmtdt

' fmEc m
1/2fm

&1/2fm

e j$sin(2Bfmt)&j2Bnfmtdt.

(18)(18)

cn '
Ec

2B m
B

&B
e j($sinx&nx)dx ' EcJn($). (19)(19)

m̃(t) ' Ec j
4

n'&4

Jn($)e j2Bnfmt
(20)(20)

Substituting our values for the in-phase and quadrature terms, we get

It is clear that m(t) is periodic so that we can define it in a Fourier series, to give

where

Let x = 2Bfmt, then dx = 2Bfmdt and the limits of integration will be -B to B so that

This result allows us to rewrite the equation for the complex envelope as
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s(t) ' Ac Re j
4

n'&4

Jn($)e j2B(fc%nfm)t

' Ac j
4

n'&4

Jn($)cos(2B(fc % nfm)t).

(21)(21)

m(t) . Eccos(2Bfct) % ½$Eccos(2B(fc % fm)t) & ½$Eccos(2B(fc & fm)t), (22)(22)

and recalling the relationship between the complex envelope, the pre-envelope, and m(t),

we know that m(t) can be found from the complex envelope by shifting in frequency and

taking the real part, i.e., (respite over)

Upon inspection, we can see that our signal is composed of a series of constants (Ec Jn($))

multiplied by cosine waves of frequencies, fc (n=0), fc ± fm (n= ± 1), fc ± 2fm, etc., where

the positive components make up the upper sidebands and the negative the lower

sidebands. Theoretically, the sum consists of the infinite harmonics of fm.

We can define the FM waves created in this fashion as either Narrow-band or Wide-

band.  This definition arises from a comparison with AM.  Recall that for tone modulation

of an AM carrier we had the carrier and an upper sideband at fc+fm and a lower sideband

at fc-fm.  If we define narrow-band FM to have this same characteristic, we can see that the

infinite summation above is reduced to having Bessel function magnitudes above zero only

for n=0 and n=± 1, i.e., Jn($)=0, |n|>1.  We find this is true for $ # 0.3, where J0($).1,

and J1($).$/2 (see Table 9.1 p. 276).  Substituting these values we find that the narrow-

band FM signal is
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B . 2)f % 2W ' 2()f % W). (23)(23)

which is composed of the carrier and the two sidebands.  This looks very much like the AM

signal except that the lower sideband can be seen to be negative in this case.

For wide-band FM, $ is not constrained and the sidebands consist of the infinite

frequency harmonics of fm.  The magnitude of the components is controlled by the

modulation index, $, and therefore Jn($).

How many of these sidebands are important for the transmission of the FM signal?

Another way to state this is how much bandwidth do we require to adequately transmit the

signal?  We stated that the frequency deviation, )f, defined the amount of deviation of the

modulating signal away from the carrier frequency.  But, because of the infinite summation

of the sidebands, the sideband frequencies will exceed )f, but we can see from Table 9.1

that the magnitude rapidly approaches zero for those sidebands above )f.  Therefore, the

bandwidth of the signal, W, always exceeds )f, but is limited.

In trying to define the bandwidth, a fellow named J.R. Carson in the 1920s noticed

that for large $, the bandwidth is approximately equal to 2)f.  However, for small $ the

bandwidth was closer to 2 fm, for a single tone, or 2 W in general.  He proposed a bandwidth

definition which is still used today called Carson's rule which is

However, Carson's rule generally underestimates the bandwidth requirement of the signal.

A better estimate is one called Carlson's rule which allows for more of the spectral lines.

Carlson's rule is
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B . 2()f % 2W). (24)(24)

m(t) ' Eccos 2Bfct % 2Bkfm
t

0
a(t)dt . (25)(25)

The power contained in a sinusoid of constant amplitude, Ec, is constant as well, i.e.,

P = ½ Ec
2.  This power relationship is valid regardless of the frequency of the sinusoid, so

long as the amplitude remains constant.  Therefore, the average power of the FM wave

remains constant at ½ Ec
2.

B. FM DEMODULATION

Now that we have modulated the frequency of our carrier, how do we recover the

original message signal?  Since the message is modulated within the signal, just as we did

with AM, we must demodulate to recover the message, a(t).  However, the methods of AM,

i.e., envelope detection (without some pre-detection) and coherent demodulation, will not

work with FM.  FM demodulators are often called discriminators and work on different

principles than we have seen before.  We can demodulate by a direct or by an indirect

method.  We will look at a method of direct demodulation.

The most prevalent type of direct method of demodulation is called the Balanced

Frequency Discriminator.  To understand the frequency discriminator, recall the equation

for the FM wave,
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m )(t) ' &Ec[2Bfc%2Bkf a(t)] sin 2Bfct % 2Bkfm
t

0
a(t)dt

' &2BfcEc 1 %
kf

fc

a(t) sin[...].

(26)(26)

If we differentiate m(t) with respect to time we get

We can see that the envelope of m'(t) is 2BfcEc[1 + kf/fc a(t)] which can be demodulated

with an envelope detector.  Therefore, to demodulate the FM signal we only need to

differentiate it and send it through an envelope detector.

You may notice that the effective carrier frequency of Eq. 26 above is not the same

as fc but deviates around it.  As long as fc is much greater than fm the detector will not follow

these changes in frequency and no distortion will occur.  However, distortion can occur with

this demodulator, due to non-linearities in the two filters.


